Temporal Analysis of Dissipative Structures in Magnetohydrodynamic Turbulence
نویسندگان
چکیده
Energy dissipation is highly intermittent in turbulent plasmas, being localized in coherent structures such as current sheets. The statistical analysis of spatial dissipative structures is an effective approach to studying turbulence. In this paper, we generalize this methodology to investigate four-dimensional spatiotemporal structures, i.e., dissipative processes representing sets of interacting coherent structures, which correspond to flares in astrophysical systems. We develop methods for identifying and characterizing these processes, and then perform a statistical analysis of dissipative processes in numerical simulations of driven magnetohydrodynamic turbulence. We find that processes are often highly complex, long-lived, and weakly asymmetric in time. They exhibit robust power-law probability distributions and scaling relations, including a distribution of dissipated energy with power-law index near −1.75, indicating that intense dissipative events dominate the overall energy dissipation. We compare our results with the previously observed statistical properties of solar flares.
منابع مشابه
Kolmogorov–Burgers Model for Star Forming Turbulence
The process of star formation in interstellar molecular clouds is believed to be controlled by driven supersonic magnetohydrodynamic turbulence. We suggest that in the inertial range such turbulence obeys the Kolmogorov law, while in the dissipative range it behaves as Burgers turbulence developing shock singularities. On the base of the She–Lévêque analytical model we then predict the velocity...
متن کاملCascades in decaying three-dimensional electron magnetohydrodynamic turbulence
Decaying electron magnetohydrodynamic (EMHD) turbulence in three dimensions is studied via high-resolution numerical simulations. The resulting energy spectra asymptotically approach a k law with increasing RB , the ratio of the nonlinear to linear timescales in the governing equation, consistent with theoretical predictions. No evidence is found of a dissipative cutoff, consistent with non-loc...
متن کاملAnalysis of the Characteristics, Physical Concepts and Entropy Generation in a Turbulent Channel Flow Using Vortex Blob Method
In this paper, using vortex blob method (VBM), turbulent flow in a channel is studied and physical concepts of turbulence are obtained and discussed. At first, time-averaged velocities, and , and then their fluctuations are calculated. To clarify turbulence structures, velocity fluctuations and are plotted. It is observed that turbulence structures occupy different positions and move with con...
متن کاملScaling properties of three-dimensional magnetohydrodynamic turbulence
The scaling properties of three-dimensional magnetohydrodynamic turbulence with finite magnetic helicity are obtained from direct numerical simulations using 512(3) modes. The results indicate that the turbulence does not follow the Iroshnikov-Kraichnan phenomenology. The scaling exponents of the structure functions can be described by a modified She-Leveque model zeta(p) = p/9+1-(1/3)(p/3), co...
متن کاملMagnetohydrodynamic turbulence: Observation and experiment
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations EBðf Þ. We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, t...
متن کامل